Production Process Tracking and Analysis Application with SQL Server

2025 Python, SQL Server Process Management
SumChemical Project

Project Overview

A tracking system that displays work orders and process parameters using SQL Server database. This desktop application is specifically designed for chemical production process monitoring and analysis, providing real-time insights and optimization tools.

Key Features

  • SQL Server Integration

    Robust database management system for storing and retrieving production data efficiently.

  • Real-time Monitoring

    Live tracking of production processes, parameters, and work orders with instant updates.

  • User Interface

    Intuitive Tkinter-based interface for easy navigation and process management.

  • Reporting System

    Comprehensive reporting tools for analyzing production metrics and performance.

Application Screenshots

Technical Details

Frontend

  • Python Tkinter for GUI
  • Custom widgets for data display
  • Real-time update system

Backend

  • SQL Server database
  • Python data processing
  • Query optimization

Features

  • Process parameter tracking
  • Work order management
  • Performance analytics

Development Process

Requirements Analysis

Understanding chemical production process requirements and designing an efficient tracking system.

Database Design

Creating an optimized SQL Server database schema for process data management.

UI Development

Building an intuitive interface focused on real-time monitoring and control.

Testing & Optimization

Ensuring accurate data tracking and efficient database operations.

Technical Implementation

Database Connection

The application uses SQL Server for data storage, with a robust connection handling system:


import pyodbc

def get_db_connection():
    conn = pyodbc.connect('Driver={SQL Server};'
                         'Server=SERVER_NAME;'
                         'Database=DATABASE_NAME;'
                         'Trusted_Connection=yes;')
    return conn

def execute_query(query, params=None):
    conn = get_db_connection()
    cursor = conn.cursor()
    try:
        if params:
            cursor.execute(query, params)
        else:
            cursor.execute(query)
        conn.commit()
    except Exception as e:
        print(f"Error executing query: {e}")
        conn.rollback()
    finally:
        conn.close()
                            

Process Tracking

Real-time process parameter monitoring implementation:


class ProcessTracker:
    def __init__(self):
        self.conn = get_db_connection()
        self.setup_ui()

    def setup_ui(self):
        self.root = tk.Tk()
        self.root.title("Process Tracking System")
        
        # Create main frame
        self.main_frame = ttk.Frame(self.root, padding="10")
        self.main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))

    def update_process_data(self):
        query = """
            SELECT parameter_name, current_value, target_value
            FROM process_parameters
            WHERE process_id = ?
        """
        cursor = self.conn.cursor()
        cursor.execute(query, (self.current_process_id,))
        return cursor.fetchall()